/* ghn_co.c 3D HNCO gradient sensitivity enhanced version. Correlates CO(i) with N(i+1), NH(i+1). Uses constant time evolution for the 15N shifts. Standard features include maintaining the 13C carrier in the CO region throughout using off-res SLP pulses; square pulses on Ca with first null at 13CO; one lobe sinc pulses on 13CO with first null at Ca; one lobe sinc pulse to put H2O back along z (the sinc one-lobe is significantly more selective than gaussian, square, or seduce 90 pulses); preservation of H20 along z during t1 and t2; waltz H1 decoupling during N15 evolution to decrease S/N loss via H1 exchange with H2O. Magic-angle option for coherence transfer gradients. TROSY option for N15/H1 evolution/detection. pulse sequence: Ikura, Kay, and Bax, Biochem, 29, 4659 (1990) Grzesiek and Bax, JMR, 96, 432 (1992) Muhandiram and Kay, JMR, B103, 203 (1994) Kay, Xu, and Yamazaki, JMR, A109, 129-133 (1994) SLP pulses: J Magn. Reson. 96, 94-102 (1992) TROSY: Weigelt, JACS, 120, 10778 (1998) Modified from hnco_3c_pfg_laue.c by RM 12/11/92 to add gradient SE. Modified by LEK Sept. 19, 1993, Nov 26, 1993, and Dec. 22, 1993 to minimally excite water etc. Revised and improved to a standard format by MRB, BKJ and GG for the ProteinPack, January 1997. TROSY added Dec 98, based on similar addition to gNhsqc. (Version Dec 1998). Modified the amplitude of the flipback pulse(s) (pwHs) to permit user adjustment around theoretical value (tpwrs). If tpwrsf < 4095.0 the value of tpwrs is increased 6db and values of tpwrsf of 2048 or so should give equivalent amplitude. In cases of severe radiation damping( which happens during pwHs) the needed flip angle may be much less than 90 degrees, so tpwrsf should be lowered to a value to minimize the observed H2O signal in single-scan experiments (with ssfilter='n').(GG jan01) CHOICE OF DECOUPLING AND 2D MODES Set dm = 'nnn', dmm = 'ccc' Set dm2 = 'nny', dmm2 = 'ccg' (or 'ccw', or 'ccp') for 15N decoupling. Must set phase = 1,2 and phase2 = 1,2 for States-TPPI acquisition in t1 [C13] and t2 [N15]. The flag f1180/f2180 should be set to 'y' if t1/t2 is to be started at halfdwell time. This will give -90, 180 phasing in f1/f2. If it is set to 'n' the phasing should be 0,0 and will still give a perfect baseline. Thus, set f1180='n' for (0,0) in C13 and f2180='n' for (0,0) in N15. f1180='y' is ignored if ni=0, and f2180='y' is ignored if ni2=0. DETAILED INSTRUCTIONS FOR USE OF ghn_co 1. Obtain a printout of the Philosopy behind the ProteinPack development, and General Instructions using the macro: "printon man('ProteinPack') printoff". These Detailed Instructions for ghn_co may be printed using: "printon man('ghn_co') printoff". 2. Apply the setup macro "ghn_co". This loads the relevant parameter set and also sets ni=ni2=0 and phase=phase2=1 ready for a 1D spectral check. At the middle of the t1 period, the 180 degree pulses on Ca and 15N are swapped to a 180 degree pulse on CO, for the first increment of t1, to refocus CO chemical-shift evolution ensuring a zero first-order phase correction in F1. This is also the case for the 1D spectral check, or for 2D/15N spectra, when ni=0. 3. Centre H1 frequency on H2O (4.7ppm), C13 frequency on 174ppm, and N15 frequency on the amide region (120 ppm). The C13 frequency remains at 174ppm, ie at CO throughout the sequence. 4. The normal 13C 180 degree pulse on Ca at the middle of t1 induces a phase shift, which should be field-invariant, and so this phase shift has been calibrated and compensated in the pulse sequence. This phase shift can be checked by setting ni=1 whereby a special 1D method is invoked in which both the 13C Ca 180 degree pulse and the simultaneous 15N 180 degree pulse are applied just as for all t1 times other than t1=0. First eliminate the Ca pulse by setting pwC3=0 and obtain a 1D spectrum. This spectrum will have reduced intensity compared to ni=0 because of 13Ca chemical-shift evolution during the time of the 180 pulses. If the phase shift is adequately compensated, a second very similar 1D spectrum will be obtained with pwC3=pwC3a. As in point 5, a more sensitive comparison of the two spectra with pwC3=0,pwC3a can be obtained with phase=2. If not adequately compensated, the first increment will be out of phase with all succeeding increments and a zero-order phase-shift will be necessary in F1, which is easily done after the 2D/3D transform. Alternatively, change the calibration by changing the phshift3 parameter in the INITIALIZE VARIABLES section of the code. The pulse pwC3 is automatically reset to its calibrated value (=pwC3a) within the pulse sequence code for 3D work and 2D/t1 studies. DO NOT CHANGE pwC3a from its calibrated value. NOTE THAT dof MUST BE ACCURATELY CALIBRATED (to 1ppm) BEFORE THE phshift3 CALIBRATION. S/N can also be maximized by arraying compC when ni=1;pwC3=pwC3a. 5. dof may be calibrated accurately to the center of the CO region, when ni=1, by using the 13CO chemical shift evolution during a period of (1/dfrq*80). Set ni=1 and pwC3=1 and obtain a well-phased absorption mode 1D spectrum. Now set phase=2 and obtain an array of spectra with dof varied by up to 20ppm either side of your best guess. dof will be correct when the integral from 7.4 to 9ppm in the 1H spectrum is close to zero - this spectrum will have the appearance of a broad "noisy" dispersion mode signal caused by some signals having a +ve shift and some a -ve shift relative to dof. Ignore the NH2 signals at about 7.1ppm. If phase=2 is also to be used for the phshift3 check as in point 4, it is handy to set dof using this method first before resetting pwC3=pwC3a. Note also that dof can be set with more sensitivity with ni=1;pwC3=pwC3a because there is a longer period of 13CO shift evolution. 6. A similar method can be used to calibrate dof2. Set ni=ni2=0 and phase=phase2=1 and obtain a well=phased absorption mode 1D spectrum. Set d3=0.0001 and phase2=1,2, sum the two resulting spectra and display with a 90 degree phase shift: clradd select(1) spadd select(2) spadd jexp5 full rp=rp+90 ds dof2 will be in the middle of the NH region when the signals between 7.4 and 9ppm in the 1H spectrum are roughly balanced between +ve and -ve signals as in point 5. Note that the same method with d3=0 should give a zero spectrum. Don't forget to reset d3=0 when you have finished. 7. H2O preservation is achieved according to Kay et al, except that a sinc one-lobe selective pulse is used to put H2O back along z. This is much more selective than a hard, Seduce1, or gaussian pulse. 8. Another difference from the work of Kay et al is that the phases of both CO 90 degree pulses are alternated to eliminate artifacts from the Ca 180 degree pulse. 9. timeTN (12 ms) was determined for alphalytic protease and is listed in dg2 for possible readjustment by the user. 10. The coherence-transfer gradients using power levels gzlvl1 and gzlvl2 may be either z or magic-angle gradients. For the latter, a proper /vnmr/imaging/gradtable entry must be present and syscoil must contain the value of this entry (name of gradtable). The amplitude of the gzlvl1 and gzlvl2 should be lower than for a z axis probe to have the x and y gradient levels within the 32k range. For any value, a dps display (using power display) shows the x,y and z dac values. These must be <=32k. 11. TROSY: Set TROSY='y' and dm2='nnn' for a TROSY spectrum of the bottom right peak of the 2D coupled NH quartet (high-field H1, low-field N15). The TROSY spectrum gives 50% S/N compared to the decoupled spectrum for a small peptide. To select any of the other three peaks of the 2D coupled quartet, in a clockwise direction from bottom right, change t4/t10 from x/y to x/-y to -x/-y to -x/y. NOTE, the phases of the SE train are almost the same as those determined for the gNhsqc sequence. The major difference is that kappa is eliminated compared to normal ghn_co so the N15 magnetization has not evolved with respect to the attached H's. I.e. the N15 state would be Ix rather than IySz if there was no coherence gradient - this imparts a 90 degree shift so t8 is changed to y (from x in the normal spectrum). Also gzlvl1 is after the 180 N15 pulse rather than before as in gNhsqc, so the sign of icosel and the t4/t10 phase2 increments are also swapped compared to gNhsqc. For ghn_c... type sequences, H1 decoupling during the first timeTN is replaced by a pi pulse at kappa/2 to reduce S/N loss for large molecules during the first TN period. For these sequences H2O flipback is achieved with two sinc one-lobe pulses, an additional one just before the SE train, similar to gNhsqc. 12. Radiation Damping: At fields 600MHz and higher with high-Q probes, radiation damping is a factor to be considered. Its primary effect is in the flipback pulse calibration. Radiation damping causes a rotation back to the +Z axis even without a flipback pulse. Hence, the pwHs pulse often needs to be reduced in its flip-angle. This can be accomplished by using the parameter tpwrsf. If this value is less than 4095.0 the value of tpwrs (calculated in the psg code) is increased by 6dB, thereby permitting the value of tpwrsf to be optimized to obtain minimum H2O in the spectrum. The value of tpwrsf is typically lower than 2048 (half-maximum to compensate for the extra 6dB in tpwrs). */ #include static int /* T is for TROSY='y', phx etc also enable TROSY phase changes */ phx[1]={0}, phy[1]={1}, phi3[2] = {0,2}, phi5[4] = {0,0,2,2}, phi9[8] = {0,0,0,0,2,2,2,2}, rec[4] = {0,2,2,0}, recT[4] = {3,1,1,3}; static double d2_init=0.0, d3_init=0.0; pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ TROSY[MAXSTR]; /* do TROSY on N15 and H1 */ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ kappa = 5.4e-3, lambda = 2.4e-3, pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "proteincal". SLP pulse shapes, "offC3" etc are called */ /* directly from your shapelib. */ pwC3 = getval("pwC3"), /*180 degree pulse at Ca(56ppm) null at CO(174ppm) */ pwC3a = getval("pwC3a"), /* pwC3a=pwC3, but not set to zero when pwC3=0 */ phshift3, /* phase shift induced on CO by pwC3 ("offC3") pulse */ pwZ, /* the largest of pwC3 and 2.0*pwN */ pwZ1, /* the largest of pwC3a and 2.0*pwN for 1D experiments */ pwC6 = getval("pwC6"), /* 90 degree selective sinc pulse on CO(174ppm) */ pwC8 = getval("pwC8"), /* 180 degree selective sinc pulse on CO(174ppm) */ rf3, /* fine power for the pwC3 ("offC3") pulse */ rf6, /* fine power for the pwC6 ("offC6") pulse */ rf8, /* fine power for the pwC8 ("offC8") pulse */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ tpwrsf = getval("tpwrsf"), /* fine power for pwHs pulse */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ pwHd, /* H1 90 degree pulse length at tpwrd */ tpwrd, /* 7.5 kHz rf for WALTZ decoupling */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("TROSY",TROSY); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t4,1,phx); settable(t5,4,phi5); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,4,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 180 degree pulse on Ca, null at CO 118ppm away */ rf3 = (compC*4095.0*pwC*2.0)/pwC3a; rf3 = (int) (rf3 + 0.5); /* the pwC3 pulse at the middle of t1 */ if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0; if (pwC3a > 2.0*pwN) pwZ = pwC3a; else pwZ = 2.0*pwN; if ((pwC3==0.0) && (pwC3a>2.0*pwN)) pwZ1=pwC3a-2.0*pwN; else pwZ1=0.0; if ( ni > 1 ) pwC3 = pwC3a; if ( pwC3 > 0 ) phshift3 = 48.0; else phshift3 = 0.0; /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf6 = (compC*4095.0*pwC*1.69)/pwC6; /* needs 1.69 times more */ rf6 = (int) (rf6 + 0.5); /* power than a square pulse */ /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf8 = (compC*4095.0*pwC*2.0*1.65)/pwC8; /* needs 1.65 times more */ rf8 = (int) (rf8 + 0.5); /* power than a square pulse */ /* selective H20 one-lobe sinc pulse */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */ tpwrs = (int) (tpwrs); /* power than a square pulse */ /* power level and pulse time for WALTZ 1H decoupling */ pwHd = 1/(4.0 * 7500) ; /* 7.5 kHz rf */ tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw)); tpwrd = (int) (tpwrd + 0.5); /* CHECK VALIDITY OF PARAMETER RANGES */ if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); abort(1);} if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); abort(1);} if ( dpwr2 > 46 ) { printf("dpwr2 too large! recheck value "); abort(1);} if ( pw > 50.0e-6 ) { printf(" pw too long ! recheck value "); abort(1);} if ( (pwN > 100.0e-6) && (ni>1 || ni2>1)) { printf(" pwN too long! recheck value "); abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y' ) { text_error("Choose either TROSY='n' or dm2='n' ! "); abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Set up f2180 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(zero); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw,zero,0.0,0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); txphase(one); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); rgpulse(pw, one, 0.0, 0.0); if (tpwrsf < 4095.0) {obspwrf(tpwrsf); tpwrs=tpwrs+6.0;} obspower(tpwrs); if (TROSY[A]=='y') {txphase(two); shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0); obspower(tpwr); obspwrf(4095.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); delay(0.5*kappa - 2.0*pw); rgpulse(2.0*pw, two, 0.0, 0.0); decphase(zero); dec2phase(zero); decpwrf(rf8); delay(timeTN - 0.5*kappa - WFG3_START_DELAY); } else {txphase(zero); shaped_pulse("H2Osinc", pwHs, zero, 5.0e-4, 0.0); obspower(tpwrd); obspwrf(4095.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); txphase(one); delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); /* PRG_START_DELAY */ xmtron(); decphase(zero); dec2phase(zero); decpwrf(rf8); delay(timeTN - kappa - WFG3_START_DELAY); } /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC8", "", 0.0, pwC8, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decphase(t3); decpwrf(rf6); delay(timeTN); dec2rgpulse(pwN, zero, 0.0, 0.0); if (TROSY[A]=='n') {xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0);} zgradpulse(gzlvl3, gt3); delay(2.0e-4); decshaped_pulse("offC6", pwC6, t3, 0.0, 0.0); decphase(zero); /* xxxxxxxxxxxxxxxxxxxxxx 13CO EVOLUTION xxxxxxxxxxxxxxxxxx */ if ((ni>1.0) && (tau1>0.0)) /* total 13C evolution equals d2 exactly */ { /* 13C evolution during pwC6 is at 60% rate */ decpwrf(rf3); if(tau1 - 0.6*pwC6 - WFG3_START_DELAY - 0.5*pwZ > 0.0) { delay(tau1 - 0.6*pwC6 - WFG3_START_DELAY - 0.5*pwZ); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC3", "", 0.0, pwC3a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); initval(phshift3, v3); decstepsize(1.0); dcplrphase(v3); /* SAPS_DELAY */ delay(tau1 - 0.6*pwC6 - SAPS_DELAY - 0.5*pwZ- WFG_START_DELAY - 2.0e-6); } else { initval(180.0, v3); decstepsize(1.0); dcplrphase(v3); /* SAPS_DELAY */ delay(2.0*tau1 - 2.0*0.6*pwC6 - SAPS_DELAY - WFG_START_DELAY - 2.0e-6); } } else if ((ni==1.0) && (pwC3==1.0e-6)) /* 13CO evolution for dof calib. */ { decpwrf(rf8); delay((1.0/(dfrq*80.0)) + 2.0e-6); /* WFG_START_DELAY */ decshaped_pulse("offC8", pwC8, zero, 0.0, 0.0); } else if (ni==1.0) /* special 1D check of pwC3 phase enabled when ni=1 */ { decpwrf(rf3); delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1 + WFG_START_DELAY); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC3", "", 0.0, pwC3, 2.0*pwN, zero, zero, zero, 2.0e-6 , 0.0); initval(phshift3, v3); decstepsize(1.0); dcplrphase(v3); /* SAPS_DELAY */ delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1); } else /* 13CO evolution refocused for 1st increment, or when ni=0 */ { decpwrf(rf8); delay(12.0e-6); /* WFG_START_DELAY */ decshaped_pulse("offC8", pwC8, zero, 0.0, 0.0); delay(10.0e-6); } decphase(t5); decpwrf(rf6); delay(2.0e-6); /* WFG_START_DELAY */ decshaped_pulse("offC6", pwC6, t5, 0.0, 0.0); /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ dec2phase(t8); zgradpulse(gzlvl4, gt4); txphase(one); dcplrphase(zero); delay(2.0e-4); if (TROSY[A]=='n') {rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron();} dec2rgpulse(pwN, t8, 0.0, 0.0); decphase(zero); dec2phase(t9); decpwrf(rf8); delay(timeTN - WFG3_START_DELAY - tau2); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC8", "", 0.0, pwC8, 2.0*pwN, zero, zero, t9, 0.0, 0.0); dec2phase(t10); decpwrf(rf3); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs) { txphase(three); delay(timeTN - pwC3a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); if (tpwrsf<4095.0) {obspwrf(tpwrsf); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY - PWRF_DELAY);} else delay(1.0e-4 - POWER_DELAY); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); if (tpwrsf<4095.0) {obspwrf(4095.0); /* POWER_DELAY */ delay(0.50e-4 - POWER_DELAY - PWRF_DELAY);} else delay(0.50e-4 - POWER_DELAY); } else if (tau2 > pwHs + 0.5e-4) { txphase(three); delay(timeTN-pwC3a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); if (tpwrsf<4095.0) {obspwrf(tpwrsf); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY - PWRF_DELAY);} else delay(1.0e-4 - POWER_DELAY); decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(tau2 - pwHs - 0.5e-4); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); if (tpwrsf<4095.0) {obspwrf(4095.0); /* POWER_DELAY */ delay(0.50e-4 - POWER_DELAY - PWRF_DELAY);} else delay(0.50e-4 - POWER_DELAY); } else { txphase(three); delay(timeTN - pwC3a - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); if (tpwrsf<4095.0) {obspwrf(tpwrsf); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY - PWRF_DELAY);} else delay(1.0e-4 - POWER_DELAY); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(tau2); obspower(tpwr); if (tpwrsf<4095.0) {obspwrf(4095.0); /* POWER_DELAY */ delay(0.50e-4 - POWER_DELAY - PWRF_DELAY);} else delay(0.50e-4 - POWER_DELAY); } } else { if (tau2 > kappa) { delay(timeTN - pwC3a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > (kappa - pwC3a - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(kappa -pwC3a -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - tau2 - pwC3a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa-tau2-pwC3a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3a, zero, 0.0, 0.0); delay(tau2); } } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0,0.0); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl2, gt1/10.0); else zgradpulse(gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 ); setreceiver(t12); }